최근 몇 년 사이 아프리카나 중동 등지에서 권력에 맞서는 반정부 시위가 잇따랐다. 권력을 가진 자는 대중이 세력을 키우지 못하도록 어떻게든 억압하려 하고, 대중은 서로 긴밀히 연락하며 점점 거대한 집단을 형성해 권력을 위협한다. 국내 연구진이 인간 사회에서 소규모 집단이 대규모로 성장하는 조건을 물리학적으로 분석해냈다. 집단이 서서히 단계적으로 커질지, 삽시간에 폭발적으로 확대될지가 외부 요인에 따라 달라질 수 있다는 것이다.
대규모 집단 형성의 과정
같은 생각이나 이해관계를 가진 사람들이 모이면 집단이 만들어진다. 그러다 서로 모르던 사람들까지 하나하나 관계를 맺고 서서히 합류하면서 자연스럽게 집단이 커진다. 관계가 없던 사람들이 새로이 관계를 맺고 한 집단에 소속되는 과정은 물리학 관점으로 보면 '스미기(percolation) 전이'와 비슷하다. 양쪽이 연결되지 않은 상태에서 연결된 상태로 변하는 현상을 물리학자들은 스미기 전이라고 부른다.
사회에서 자연스럽게 생긴 집단의 크기는 보통 일정하지 않고 다양하다. 큰 집단, 중간 집단, 작은 집단이 공존한다. 그런데 2009년 미국의 수학자, 물리학자들은 집단 형성에 영향을 주는 외부 요인이 있을 때는 집단 형성 과정이 뚜렷하게 달라진다는 모형을 제시했다. 집단의 규모가 커질수록 성장이 더 억압받게 되면서 다양한 크기가 아니라 비슷비슷한 중간 크기의 집단이 여러 개 생기고, 어느 순간 마치 기다렸다는 듯 결합해 갑작스럽게 대규모 집단이 만들어진다는 것이다.
물리학자들이 보기에 사람들이 서서히 관계를 맺으면서 다양한 크기의 집단이 생기는 과정은 '연속적'인 현상이다. 반대로 사람들 관계가 폭발적으로 연결돼 갑자기 대규모 집단이 만들어지는 과정은 '불연속적'이다. 과거 물리학계에선 스미기 전이는 연속적으로만 일어난다고 여겼다.
그러나 2009년 제시된 모형은 스미기 전이가 불연속적으로도 일어날 수 있다는 얘기가 된다. 최근 스미기 전이를 둘러싸고 과학자들이 치열한 논쟁을 벌여온 이유다. 이 논쟁의 해결점을 바로 서울대 물리천문학부 강병남 교수팀이 찾아내 미국 과학학술지 '사이언스' 8일자에 소개했다.
시위 발생 ㆍ차량정체 등 해석 가능
권력을 휘두르는 장수 밑에서 부하들이 조금씩 집단을 형성해 장수에 대항하려는 움직임이 시작된 상황을 가정해보자. 장수에 대항하려는 부하들은 장수가 모르게 서서히 집단을 키워(연속적 스미기 전이) 대규모 세력을 만들려고 한다. 장수는 자신의 자리가 위태로워지지 않도록 부하들을 억압하면서 한편으론 부하 중 일부를 자기 편으로 끌어들여 집단의 움직임을 감시하거나 집단이 커지지 못하게 방해할 것이다. 따라서 이때 집단 형성에 영향을 주는 외부 요인은 장수의 권력이다. 결국 장수 입장에서는 어떤 부하를 몇 명이나 포섭하느냐가 자신의 권력을 유지하기 위한 관건이다.
강 교수팀은 통계물리 프로그램을 이용해 부하가 N명일 때 logN명 이상을 무작위로 뽑은 다음 그 중 제일 힘이 없거나 다른 부하들과의 관계가 적은 사람을 포섭하는 게 장수에게 가장 유리하다는 사실을 계산해냈다. 예를 들어 부하가 1만 명이면 무작위로 4명 이상을 골라 그 중 가장 약자를 자기 편으로 끌어들이는 식이다.
강 교수는 "logN명 미만의 부하 중에서 뽑은 최약자는 아무리 포섭해도 서서히 반발 집단이 커지는 연속적 스미기 전이를 막을 수 없다는 계산이 나왔다"며 "반대로 logN명 이상의 부하 중 최약자를 장수가 자기 편으로 끌어들이면 연속적 스미기 전이는 피할 수 있다는 얘기"라고 설명했다. 하지만 시간이 좀 걸리더라도 언젠가 부하들의 집단이 폭발적으로 확 커질(불연속적 스미기 전이) 가능성은 여전히 남아 있다. 결국 장수가 포섭 대상자를 누구로 선택하느냐에 따라 집단 형성 과정에 큰 영향을 미친다는 뜻이다. 또 logN은 스미기 전이가 연속적으로 일어날 건지, 불연속적으로 일어날 건지를 가르는 조건이 된다.
사회에서 일어나는 복잡다단한 집단 형성 과정을 이번 연구가 모두 설명하긴 어렵다. 하지만 실제 사람들의 움직임을 과학적으로 해석하고 예측을 시도했다는 점에서 의미가 있다. 언뜻 제멋대로이고 무질서해 보이는 현상에서 규칙이나 원리를 찾아내는 최신 연구분야가 바로 '복잡계 과학'이다. 이 같은 복잡계 과학은 전염병의 갑작스런 확산을 지연시키거나, 대규모 시위나 혁명의 발단을 분석하거나, 차량의 정체 현상을 예측하는 등 다양한 분야에도 활용될 수 있을 것으로 연구팀은 내다보고 있다.
임소형기자 precare@hk.co.kr
기사 URL이 복사되었습니다.
댓글0